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Abstract 

River discharge is affected by many factors, such as water level, rainfall, and precipitation. This study proposes a new hybrid 

framework named LAES (LASSO-ANN-EMD-SVM) to model the relationship of daily river discharge with meteorological varia-

bles. This hybrid framework is a composite of the least absolute shrinkage and selection operator (LASSO), an artificial neural 

network (ANN), and an error correction method. In the first stage, LASSO identifies meteorological variables that have a signifi-

cant influence on the generation of river discharge. Next, the ANN model is used to predict river discharge using meteorological 

variables selected by LASSO, and the error series is determined. The error series is decomposed into intrinsic mode functions and 

residuals using empirical mode decomposition (EMD). The EMD components are modeled using the support vector machine 

(SVM) model, and the error predictions are aggregated. In the last stage, the LASSO-ANN predictions and the predicted error 

series are aggregated as the final discharge prediction. The proposed hybrid framework is illustrated on the Kabul River of Paki-

stan. The performance of the proposed hybrid framework is compared with six models using various performance measures and 

the Diebold-Mariano test. These models include multiple linear regression (MLR), SVM, ANN, LASSO-MLR, LASSO-SVM, and 

LASSO-ANN models. The findings reveal that the proposed hybrid model outperforms all other models considered in the study. 

In the testing phase, the root mean square error (RMSE), mean absolute percentage error (MAPE), and mean absolute error 

(MAE) of the proposed LAES hybrid model are 337.143 m3/s, 32.354%, and 218.353 m3/s which are smaller than all other mod-

els compared in the study. Our proposed hybrid system is an efficient model for river discharge prediction that will be helpful in 

water management and protection against floods. Long-term prediction can help to identify the major effects of climate change 

and to make evidence-based environmental policies. 
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1. Introduction 

Water is necessary for the survival of all living organisms in the world. Water is life, and demand for it is 

increasing due to rapid increases in population, urbanization, and industrialization. Moreover, water is a 

primary need for domestic, industrial, and agricultural activities (Mehta et al. 2022). Thus, it is essential to 

carefully manage and plan water resources to reduce loss of life and property damage caused by drought, 

floods, or heat waves (Ali, Shahbaz 2020; Mangukiya et al. 2022). Climate changes influence the hydrologi-

cal cycle globally; the resulting variations in weather and climate have increased the risks of drought and 

floods because weather changes, variations in precipitation, peak flows, and extreme temperatures have 

impacts on river discharge (Mehmood et al. 2021). The amount of discharge generated from a catchment 

depends on various factors such as duration, meteorological variables, velocity, and water level (Gleason et 



al. 2014; Saidi et al. 2018; Malik et al. 2020). Therefore, it is necessary to model river discharge using infor-

mation on the weather at the relevant hydrological station (Dariane, Azimi 2018). 

In the past thirty years, stochastic, physical, black box (machine learning and statistical), and conceptual 

models have been widely applied in hydrological studies. Physical models have been used for hydrological 

modeling, but their successful application is bound to the complexity of governing equations and the diffi-

culty in measuring the parameters involved (Yousuf et al. 2017). Statistical models try to determine the re-

lationships within the actual data. Their application is limited when data have unique and complex charac-

teristics such as non-linearity, multicollinearity, volatility, irregularities, noise, outliers, and more. In the 

past two decades, machine learning models have gained importance in hydrology due to their flexibility in 

handling datasets with unique characteristics (Ravindran et al. 2021; Elbeltagi et al. 2022). Rasouli et al. 

(2012) applied a support vector machine (SVM), Bayesian neural network, and Gaussian process to predict 

non-linear river discharge in North America using climate and weather variables. Ali and Shahbaz (2020) 

applied an artificial neural network (ANN) to predict river discharge in the upper Jhelum River basin of 

Pakistan. 

Although data-driven (statistical and machine learning) models are applied to predict river discharge, there 

is no single model that can predict river discharge without bias or with utmost certainty (Mehmood et al. 

2021). Literature shows that researchers have developed hybrid models by combining two or more tech-

niques to improve the prediction ability of the models (Shabbir et al. 2024). Wang and Li (2018) intro-

duced a hybrid framework based on an error correction approach using the generalized autoregressive 

conditionally heteroscedastic (GARCH) model when inherent correction and heteroscedasticity of errors 

cannot be ignored. Zhang et al. (2018a) developed an error-correction-based hybrid framework using an 

autoregressive (AR) model to predict water levels with improved accuracy. Luo et al. (2019) suggested a 

hybrid framework based on a composition of factor analysis, decomposition of time series, data regres-

sion, and error suppression to predict river discharge. Yan et al. (2020) combined a generalized additive 

model (GAM) with principal component analysis (PCA) to model the relationship between water level and 

macroinvertebrate diversity index in the Baiyandian Lake of China. Mehr and Gandomi (2021) suggested a 

hybrid model by integrating a multi-stage genetic programming (MSGP) model with the least absolute 

shrinkage and selection operator (LASSO) for improved prediction of river flow. Emadi et al. (2022) mod-

eled river water using a hybrid evolutionary data-driven approach. 

River discharge estimation is challenging in hydrological studies because its generation depends on various 

factors such as rainfall patterns, spatial-temporal irregularities, climatic changes, and many more (Cheng et 

al. 2019; Hu et al. 2022). In literature, much discussion is on the time series prediction of river discharge 

(see Luo et al. 2019; Mehr, Gandomi 2021; Adnan et al. 2022). There is an essential need to develop new 

methods to evaluate the possible influence of different factors on the generation of river discharge. Keep-

ing in view this gap, this study aims to develop a new hybrid approach to examine the relationship be-

tween river discharge and meteorological variables. 



A new hybrid framework named LAES (LASSO-ANN-EMD-SVM) is proposed in this study based on a 

combination of feature selection, an ANN model, and an error correction method. In the first stage, 

LASSO is used to identify meteorological variables that have significant relationships with river discharge. 

The variables identified by LASSO are then used as input variables to the ANN model to obtain the dis-

charge predictions, and then the error series is computed. Further, the empirical mode decomposition 

(EMD) technique is used to decompose error series into intrinsic mode functions and residuals. These 

components are modeled using the SVM model, and their predictions are aggregated. The final discharge 

prediction is obtained by adding the LASSO-ANN discharge predictions with EMD-SVM error predic-

tions. Application of the proposed LAES hybrid framework is demonstrated for the Kabul River of Paki-

stan, and its prediction performance is compared with different models. 

The proposed hybrid framework is novel as it efficiently predicts river discharge by considering the influence 

of meteorological variables that have a significant impact on river discharge using LASSO. In addition, the 

error correction approach in the proposed LAES hybrid model helps to enhance the prediction of discharge 

by capturing the randomness and volatility of the error series. It provides reliable estimates of river discharge 

and can be helpful in the management of water supply and flood control. 

2. Methods 

2.1. Multiple linear regression 

The multiple linear regression (MLR) model is a simple and widely used modeling technique. The MLR 

model is given as: 

𝑦𝑗 = 𝛽0 + 𝛽1𝑥1𝑗 + 𝛽2𝑥2𝑗 + ⋯ + 𝛽𝑝𝑥𝑝𝑗 + 𝑢𝑗 ,       𝑗 = 1,2, . . . , 𝑛 (1) 

where 𝑦𝑗 is the dependent (output) variable, 𝛽𝑗 are the regression coefficients, 𝑥𝑗  are the independent (in-

put) variable, 𝑛 is the number of observations, 𝑝 is the number of independent variables, and 𝑢𝑗  is the re-

sidual term. 

2.2. Least absolute shrinkage and selection operator 

Tibshirani (1996) introduced the least absolute shrinkage and selection operator (LASSO) as a variable-

selection approach for regression models. The method minimizes the residual sum of squares subject to 

the absolute values of the regression coefficients. LASSO  performs variable selection and regularization 

simultaneously to enhance the interpretability and precision of statistical models (Tibshirani 1996). This 

study applies LASSO to determine important meteorological variables for predicting river discharge. 

Assuming a sample contains 𝑀 events where each event has 𝑝 number of independent variables and one 

dependent variable, let 𝐲𝐢 be the dependent (output) variable, and 𝐱𝐢 = (𝑥1, 𝑥2, … , 𝑥𝑝)
𝑇

 be the vector of 

𝑖𝑡ℎ independent (input) variables, then the objective function of LASSO is: 



For all ∑ |𝛽𝑗| ≤ 𝜆,
𝑝
𝑗=1  find the 𝑚𝑖𝑛

𝛽

1

𝑀
∑ (𝒚𝒊 − 𝐱𝒊

𝑻𝛃)
2𝑀

𝑖=1  (2) 

where 𝜆 is a pre-determined parameter that determines the regularization degree and 𝛃 = (𝛽1, 𝛽2, … , 𝛽𝑝) 

is the vector of regression coefficients. Let 𝐗 be the matrix of independent variables, i.e. 𝐗𝐢𝐣 = (𝑥𝑖)𝑗, 

where 𝑖 = 1, 2, … , 𝑀, 𝑗 = 1, 2, … , 𝑝 and 𝑥𝑖
𝑇  is the 𝑖𝑡ℎ row of 𝐗. Then, the above formula in a compact 

form can be written as:  

For all ‖𝛃‖1 ≤ 𝜆, calculate 𝑚𝑖𝑛
𝛽

{
1

𝑀
‖𝒚 − 𝐗𝛃‖2

2} (3) 

where ‖𝛃‖𝑝 = (∑ |𝛽𝑖|𝑝
𝑀
𝑖=1 )

1/𝑝
 is the standard 𝐿𝑝 norm, 𝟏𝑴 is a column vector of 𝑀 dimensions with 

entries 1. In this study, LASSO is employed using the optimal glmnet library in R language and the opti-

mal value of the LASSO parameter using this library is obtained using a 5-fold cross-validation approach. 

2.3. Artificial neural network  

The artificial neural network (ANN) is a robust modeling tool in which information processing is a repre-

sentation of biological systems (Kachrimanis et al. 2003). The network is constructed from interconnected 

neurons, which can determine values from the inputs through network processing. The neuron receives 

input signals and provides the output signal that mainly depends on the neuron processing function. The 

ANN architecture consists of a series of interlinked neuron layers. Every layer is linked with another layer 

through neurons, which transfer information between these layers. Through this processing, the infor-

mation reaches the output (dependent variable) layer. The ANN mechanism follows four assumptions: 

a) Inputs are handled by neurons. 

b) Through the connection of neurons, the information of inputs is passed on to the adjacent layers. 

c) Each neuron has a weight, and the output from the neuron is the product of its input and its associated 

weight. 

d) The transmitted inputs are passed via the activation of neurons to obtain the output. 

Figure 1a shows the architecture of the ANN model, and Figure 1b presents the structure of a neuron where 

every input (independent variable) comes from other neurons and are multiplied by their weights (𝑤𝑗; 𝑗 =

1,2, … , 𝑛) respectively and then aggregated with the bias (𝐛) vector. This aggregated input (𝑠) is passed 

using the transfer or activation function (𝑓) to obtain the output (𝑎) of a specific neuron. Letting 𝐱 be the 

vector of independent (input) variables, the neural network maps into another output vector 𝐚 through: 

𝐚 = 𝑓(𝐱. 𝑤 + 𝐛) (4) 

The mean squared error (MSE) is computed and using the back-propagation process, the weights of the 

entire network are modified in the training process. The accuracy of the ANN depends on the quality and 

amount of data in training. 



In this study, the ANN algorithm is trained by a back-propagation technique where the output and input 

variables are applied in the network. The Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimization is em-

ployed in a three-hidden-layer network. In the input layer of the ANN algorithm, the activation function is 

applied with 1000 iterations in the hidden layers. In this study, the ANN algorithm is applied using the val-

idant library in the R programming language. 

 

Fig. 1. The mathematical model of ANN (a) and systematic representation of a neuron (b). 

2.4. Empirical mode decomposition 

Huang et al. (1998) introduced empirical mode decomposition (EMD) as an adaptive method for signal 

analysis. The EMD is designed to analyze non-linear series. The EMD approach assumes that a signal 

contains different intrinsic mode functions (𝐼𝑀𝐹𝑠) of oscillations. Every mode has the same number of 

extrema and zero-crossings. There is a single extremum between successive zero-crossings. In this way, 

the signal is decomposed into different 𝐼𝑀𝐹𝑠 and residuals. A component is an 𝐼𝑀𝐹 if it satisfies two 

conditions: (i) the number of extrema and the number of zero-crossings must be equal to one or differ at 

most by one, and (ii) at any point, the average of the envelope is zero (Huang et al. 1998). Any original sig-

nal 𝑦(𝑡) can be decomposed using the EMD algorithm as follows (Lei et al. 2003; Jungsheng et al. 2006): 

a) Find the local minima and maximum through the cubic spline line as the upper envelope and lower 

envelope, respectively.  



b) Find the mean (𝑚1) of upper and lower envelopes. 

c) The difference between the 𝑦(𝑡) and the 1𝑠𝑡  component 𝑚1 is the first component denoted as ℎ1 i.e. 

ℎ1 = 𝑦(𝑡) − 𝑚1. If ℎ1 is an 𝐼𝑀𝐹, then it is said to be the first 𝐼𝑀𝐹 component of 𝑦(𝑡).  

d) If ℎ1 is not an 𝐼𝑀𝐹, then it is treated as an original signal, and the steps (a)-(c) are repeated, then 

ℎ1 − 𝑚11 = ℎ11.  

After repeating the sifting process 𝑘 times, ℎ1𝑘 becomes an 𝐼𝑀𝐹 , i.e. ℎ1(𝑘−1) − 𝑚1𝑘 = ℎ1𝑘 , then it is 

termed as:  

𝑐1 = ℎ1𝑘 (5) 

The first 𝐼𝑀𝐹 component from the data. 

e) Next, subtract 𝑐1 from 𝑦(𝑡) to obtain 𝑢1 = 𝑦(𝑡) − 𝑐1 where 𝑢1 denotes the treated data, and the 

process is repeated 𝑛 times to get 𝑛 𝐼𝑀𝐹𝑠 of 𝑦(𝑡). Then, 

𝑢1 − 𝑐2 = 𝑢2

⋮
𝑢𝑛−1 − 𝑐𝑛 = 𝑢𝑛

} (6) 

At the end of the process, we have 𝐼𝑀𝐹𝑠 (𝑐𝑗; 𝑗 = 1,2, … , 𝑛) and residual (𝑢𝑗). By summation of all the 

components, the original signal 𝑦(𝑡) can be obtained as: 

𝑦(𝑡) = ∑ 𝑐𝑗 + 𝑢𝑛 𝑛
𝑗=1  (7) 

The EMD method is implemented using the EMD library in R language in this study. 

2.5. Support vector machine 

Support vector machine (SVM) is a popular modeling technique for classification and regression prob-

lems. The SVM algorithm maps complex high-dimensional data into high-feature space (Vapnik 1995). 

We assume a training set with 𝑛 observations, {𝑥𝑑 , 𝑦𝑑}, 𝑑 = 1,2, … , 𝑛, 𝑥𝑑  𝜖 𝑅, 𝑦𝑑 𝜖 𝑅, where 𝑦𝑑 denotes 

the estimated value of the dependent (output) variable, 𝑥𝑑 is the corresponding lagged values of the de-

pendent variable, and 𝑛 is the sample size. Then, the SVM is developed as: 

𝑓(𝑥) = 𝛚𝐓φ(𝑥) + 𝑏 (8) 

where 𝑓(𝑥) is the estimated dependent variable, 𝑏 ∈ 𝑅 is the bias, and 𝛚 ∈ 𝑅 represents the vector of 

weights. The transfer function φ(𝑥) maps input data into high-dimensional space. The Eq. (8) is solved 

by risk minimization as follows: 



Minimum: (
‖𝛚𝟐‖

2
+ 𝑐 ∑ (𝑛

𝑑=1 𝜉∗ + 𝜉))  subject to: {

𝑓(𝑥𝑑) − 𝑦𝑑 ≤ 𝜀 + 𝜉∗

𝑦𝑑 − 𝑓(𝑥𝑑) ≤ 𝜀 + 𝜉
𝜉, 𝜉∗ ≥ 0

         (9) 

where 𝑐 > 0 represents the penalty parameter, 𝜉 and 𝜉∗are slack variables that show the upper and lower 

constraint of 𝑓(𝑥), and 𝜀 denotes the insensitive loss function. Further, the Lagrangian function is used as 

the non-linear regression function, which replaces φ(𝑥) and 𝛚 in Eq. (8) as: 

𝑓(𝑥𝑑) = ∑ (𝛼𝑑 − 𝛼𝑑
∗ )𝑘(𝑥, 𝑥𝑑) + 𝑏𝑛

𝑑=1  (10) 

where 𝑘(𝑥, 𝑥𝑑) = ⟨φ(𝑥), φ(𝑥𝑑)⟩ is the kernel function. The 𝛼𝑑
∗  and 𝛼𝑑 represents the Lagrange coeffi-

cients. 

In this study, SVM is applied to capture the features of the error series using the radial basis function 

(RBF) kernel, i.e. 𝑘(𝑥, 𝑥𝑑) = 𝑒
||𝑥−𝑥𝑑||

2𝑔2  
 , where 𝑔 is the width of RBF (Baydaroğlu et al. 2018). The SVM 

algorithm is applied in this study using the R language e1071 library with unit cost and 𝑔 = 1/𝑚 where 𝑚 

is the number of input variables. 

3. Proposed hybrid framework 

In this paper, we propose a novel LASSO-ANN-EMD-SVM (LAES) hybrid framework to predict daily 

river discharge based on its relationship with the meteorological variables. The proposed LAES hybrid 

framework is displayed in Figure 2.  

The steps of the LAES framework are: 

a) LASSO is applied for the selection of meteorological variables that influence discharge (𝑦) of the 

river. 

b) Next, the ANN model is employed to model river discharge using meteorological variables as inde-

pendent variables and the predictions of river discharge (�̂�𝐿𝐴) are obtained. Further, the error (i.e. 

�̂� = 𝑦 − �̂�𝐿𝐴) is computed. 

c) Using EMD, the error is decomposed into sub-series, and then the SVM model is used to predict 

each sub-series. By aggregating them, the predicted error (�̂�𝐸𝑆) is obtained. 

d) The final river discharge prediction is obtained using the predicted error series to correct the pre-

dicted river discharge in stage II (i.e. �̂�𝐿𝐴𝐸𝑆 = �̂�𝐿𝐴 + �̂�𝐸𝑆). 

The proposed LAES hybrid method is a unique combination of the feature selection method with the 

ANN model and error correction approach. To the best of our knowledge, there is no hybrid model in the 

literature that integrates LASSO with an error correction approach for modeling non-linear and high-di-

mensional data sets. 



 

Fig. 2. The proposed LAES hybrid framework. 

3.1. Limitations of LAES hybrid framework 

The efficiency of the LAES hybrid framework depends on the optimal choice of parameters of the 

LASSO approach. This framework works efficiently when the independent variables are selected using the 

optimal value of the LASSO parameter and the information loss by dropping variables is minimal. A high 

value of the LASSO parameter can contribute toward a loss of information, which may result in poor 

model fit. Secondly, the performance of the proposed hybrid method depends on the availability of data 

variables that may vary in different regions of the world due to differences in weather characteristics. The 

performance of the LAES hybrid model may vary with respect to changes in region (or location) of study 

and climatic conditions. 

4. Application 

Data and performance measures are described in this section. The codes of this study were written in R 

language version 4.1.0. The complete analysis is performed on a personal computer with an Intel Core i9-

9900 CPU (32GB RAM).  

4.1. Description of data 

The Khyber Pakhtunkhwa province is a mountainous region, including the Tirich Mir, Lalazar, Hindu 

Kush, and some other mountain ranges. The changing climate of this region affects air temperature, water 



flows, precipitation, and groundwater resources for irrigation systems and domestic use. These conditions 

make the northern area of Pakistan prone to drought or flooding due to changing environment and 

weather conditions.  

The Kabul River begins at the Unai pass base from the Hindu Kush mountains in Afghanistan, flowing 

toward the east and spanning 700 km to drain into the Indus River of Pakistan (Mehmood et al. 2021). 

The Kabul River at Nowshera station is located at a latitude of 34°0'25''N and longitude of 71°58'50''E. 

The hydrometeorological regime is characterized by rain in the spring and snow in the winter. The melting 

of glaciers in summer is increasing each year due to high temperatures, leading to rising water levels in the 

river (Rasouli 2022). In addition, rainfall in the monsoon season also affects water levels in the river. The 

Kabul River is influenced by varying climatic conditions, which may lead to hydrometeorological hazards 

(i.e., heatwaves, floods or drought). 

Figure 3 shows the location of the Kabul River in Pakistan. Kabul River data was collected from the Sur-

face Water Hydrology Project (SWHP) Department of the Water and Power Development Authority of 

Pakistan (WAPDA) from 1st January 2005 to 31st December 2017. The data contain river discharge and 

meteorological variables. The meteorological variables include air temperature (minimum and maximum), 

pan water (minimum and maximum), relative humidity (8 AM and 5 PM), dew point (8 AM and 5 PM), 

evapotranspiration, and wind speed. Average temperature and precipitation have high variability across the 

basin. River flow has been high during the monsoon period in Pakistan, particularly in July and August. In 

the midst of 2005, 2010, and 2015, there was extensive flooding due to high temperatures and heavy rain-

fall in the region. The discharge had some missing values, which were replaced with the monthly average 

(mean) value. Outliers present in the data were also replaced by median of the respective month. The 

number of observations for each variable is 4748, approximately 365 daily values for 13 years. 

 
Fig. 3. Location of Kabul River in Pakistan.  



Table 1 shows summary descriptions of all the variables of the Kabul River data. The air temperature (max-

imum), air temperature (minimum), pan water (maximum), pan water (minimum), dew point (8 AM and 5 

PM), relative humidity (8 AM and 5 PM) have negatively skewed distributions, while river discharge, wind 

speed, evapotranspiration, precipitation and rainfall have positively skewed distributions. The average dis-

charge in the Kabul River is 871.8 m3/s. Figure 4 shows the Kabul River discharge series. It shows that 

there are non-linear relationships between river discharge and all meteorological variables.  

Table 1. Descriptive summary of variables. 

Variables Units Variables Mean Minimum Maximum Standard Deviation Skewness 

River discharge m3/s 𝑦 871.8 68.7 4724.0 750.7 1.4 

Air Temperature Maximum oF 𝑥1 85.0 5.0 122.0 15.4 –0.3 

Air Temperature Minimum oF 𝑥2 64.0 5.0 110.0 13.9 –0.1 

Pan Water Maximum oF 𝑥3 79.9 8.0 112.0 14.3 –0.3 

Pan Water Minimum oF 𝑥4 72.8 16.0 106.0 13.1 –0.1 

Dew point 8 AM oF 𝑥5 61.2 –9.0 93.0 13.6 –0.1 

Dew point 5 PM oF 𝑥6 70.1 12.0 110.0 15.5 –0.1 

Relative Humidity 8 AM % 𝑥7 81.7 4.0 100.0 14.4 –1.7 

Relative Humidity 5 PM % 𝑥8 70.9 1.0 100.0 15.9 –0.9 

Wind Speed mph 𝑥9 30.6 0.0 170.0 24.3 1.3 

Evapotranspiration mm d-1 𝑥10 5.1 0.0 27.9 5.1 0.9 

Precipitation mm d-1 𝑥11 2.7 0.0 91.0 8.2 4.7 

Rainfall mm d-1 𝑥12 3.3 0.0 161.0 11.5 6.1 

The data variables were normalized using the following (Duan et al. 2021):  

𝑧𝑛𝑜𝑟𝑚𝑎𝑙 =
𝑧−𝑧𝑚𝑖𝑛

𝑧𝑚𝑎𝑥−𝑧𝑚𝑖𝑛
 (11) 

where 𝑧 is the original data variable, 𝑧𝑛𝑜𝑟𝑚𝑎𝑙  is the normalized data variable, 𝑧𝑚𝑖𝑛 is the minimum value, 

and 𝑧𝑚𝑎𝑥  is the maximum value of the original data variable. After normalization, the dataset is divided 

into two parts, where 80% of the data are used for training and the remaining 20% for testing (Kisi et al. 

2021; Shabbir et al. 2022). The performance of models is evaluated by 5-fold cross-validation using differ-

ent performance evaluation measures and the average results of these indicators for training and testing 

data. 

 

Fig. 4. Kabul River discharge series. 



4.2. Performance evaluation measures 

The prediction performance of the proposed hybrid framework is evaluated on both training and testing 

datasets. A 5-fold cross-validation approach and different goodness-of-fit measures are selected to assess 

the performance of models. These measures include root mean square error (RMSE), mean absolute per-

centage error (MAPE), root-relative square error (RRSE), mean absolute error (MAE) and coefficient of 

determination (R2). These measures are given as follows (Zeinali et al. 2020; Shabbir et al. 2023): 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑗 − �̂�𝑗)

2𝑛
𝑗=1  (12) 

 𝑀𝐴𝑃𝐸 =
100

𝑛
∑ |

𝑦𝑗−�̂�𝑗

𝑦𝑗
|𝑛

𝑗=1  (13) 

𝑅𝑅𝑆𝐸 = √
∑ (𝑦𝑗−�̂�𝑗)

2𝑛
𝑗=1

∑ (�̂�𝑗−�̅̂�)
2𝑛

𝑗=1

 (14) 

  𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑗 − �̂�𝑗|𝑛

𝑗=1  (15) 

𝑅2 = 1 − (
∑ (𝑦𝑗−�̂�𝑗)

2𝑛
𝑗=1

∑ (𝑦𝑗−�̅�)
2𝑛

𝑗=1

) (16) 

where 𝑛 denotes the total number of observations, 𝑦𝑗 denotes the actual observation and �̂�𝑗 denotes the 

predicted values. The terms �̅� and �̅̂� denote the average of observed and predicted values, respectively. 

To compare the performance of the different models for river discharge prediction, the improvement per-

centages of RMSE, MAPE, RRSE, and MAE are also used and are given as: 

𝑃𝑅𝑀𝑆𝐸 =
(𝑅𝑀𝑆𝐸𝑖−𝑅𝑀𝑆𝐸𝑗)

𝑅𝑀𝑆𝐸𝑖
×  100 (17) 

𝑃𝑀𝐴𝑃𝐸 =
(𝑀𝐴𝑃𝐸𝑖−𝑀𝐴𝑃𝐸𝑗)

𝑀𝐴𝑃𝐸𝑖
×  100 (18) 

𝑃𝑅𝑅𝑆𝐸 =
(𝑅𝑅𝑆𝐸𝑖−𝑅𝑅𝑆𝐸𝑗)

𝑅𝑅𝑆𝐸𝑖
×  100 (19) 

𝑃𝑀𝐴𝐸 =
(𝑀𝐴𝐸𝑖−𝑀𝐴𝐸𝑗)

𝑀𝐴𝐸𝑖
×  100 (20) 

𝑃𝑅2 =
(𝑅𝑖

2−𝑅𝑗
2)

𝑅𝑖
2 ×  100 (21) 

where subscript 𝑖 denotes the competing model and subscript 𝑗 indicates the proposed LAES hybrid 

model. These quantities indicate the degree of improvement in the prediction performance of one model 

relative to another model (Duan et al. 2021). 



The Diebold-Mariano (DM) test has been widely used in literature to compare the forecast accuracy of 

two models (Silva et al. 2021; Shabbir et al. 2022). The null and alternative hypotheses are: 

𝐻0: 𝐸[𝑑𝑡] ≥ 0 (22) 

𝐻1: 𝐸[𝑑𝑡] < 0 

where 𝑑𝑡 is the difference loss function, i.e., 𝑑𝑡 = 𝑒1𝑡 − 𝑒2𝑡 , 𝑒1𝑡  and 𝑒2𝑡 denotes the set of prediction 

errors of two competing models. The test statistic is 𝐷𝑀 =
𝑑

(
2𝜋�̂�𝑑(0)

𝑚⁄ )
1/2 , where 𝑚 is the length of pre-

diction errors, �̅� =
1

𝑚
∑ (𝑑𝑡)𝑚

𝑡=1  is the average loss differential between two predictions,  The DM statistic 

follows the standard normal distribution (i.e. 𝑁(0,1)) and 𝑓𝑑(0) is the spectral density. The 2𝜋𝑓𝑑(0) is 

the consistent estimator of the asymptotic variance. The null hypothesis (𝐻0) is rejected if 𝐷𝑀<−𝑍𝛼 , 

where 𝑍 is the standardized normal percentile with probability 𝛼.  

In this study, a one-sided DM test is used to compare the prediction accuracy of the LAES model with six 

models. This test uses subscript 1 for the proposed LAES model and subscript 2 for the competing mod-

els. This test is applied using the squared differences loss function to compare models at a 1% significance 

level. If 𝐷𝑀 < −2.326, we will reject the null hypothesis. The proposed LAES hybrid model is compared 

with MLR, SVM, ANN, LASSO-MLR, LASSO-SVM and LASSO-ANN models in this study. 

5. Results and discussion 

In the proposed hybrid framework, LASSO is employed to choose meteorological variables that have sig-

nificant roles in predicting Kabul River discharge. This step eliminates insignificant variables and con-

structs a better prediction model. Using LASSO, we retain only important input variables that influence 

the river discharge of the Kabul River. The results of the LASSO using 𝜆 = 0.010 are shown in Figure 5a. 

LASSO eliminates three meteorological variables, i.e., pan water (maximum), relative humidity (8 AM) and 

relative humidity (5 PM). The air temperature (minimum and maximum), dew point (8 AM), relative hu-

midity (5 PM), rainfall, precipitation, wind speed, and evapotranspiration are significant variables for pre-

diction of river discharge. These variables. {𝑥1, 𝑥2 , 𝑥4, 𝑥5, 𝑥8, 𝑥9, 𝑥10 , 𝑥11, 𝑥12} are used as inputs to 

LASSO-based models. Bui et al. (2019) stated that dew point is a component of the temperature variable. 

The precipitation and rainfall factors are dependent on the air temperature and are indirectly associated 

with the dew point.  

Figure 5b shows that dew point (8 AM) is the most significant variable for predicting river discharge.  

These variables selected by LASSO are used as inputs to the ANN model in the proposed hybrid frame-

work. The prediction results by LASSO-ANN in the first round of the training phase are demonstrated in 

Figure 6a. The results of the remaining rounds are given in supplementary materials. 



 

Fig. 5. The variable screening (a) and variable importance (b) results from LASSO on Kabul River data. 

After ANN model training, the predictions and error series are obtained. Stationarity of the error series is 

checked using an augmented Duckey-Fuller (ADF) test. The Dickey-Fuller statistic is –3.3875, indicating 

that the error series in the first round is non-stationary at the 5% level of significance. The results of ADF 

tests of the remaining rounds are provided in the supplementary materials. Next, the EMD decomposes 

the error series into 𝐼𝑀𝐹𝑠 and residuals as shown in Figure 6b. Then, the SVM is applied to model each 

component of the decomposed error series. The sub-series predictions are obtained and aggregated as the 

final error prediction shown in Figure 6c. The final prediction of river discharge is computed by adding 

the predicted errors and predicted river discharge. Lastly, the actual predicted values of river discharge are 

obtained by anti-normalization using Eq. 11. Figure 7 shows the predicted discharge plot in the testing 

phase in the first round. It reveals that the proposed LAES hybrid models have the closest predictions to 

the observed river discharge. 



 

Fig. 6. Prediction results of LASSO-ANN: (a) error decomposition using EMD; (b) modeling of decomposed com-

ponents (c) in the first round of training the phase for the Kabul River. 



 

Fig. 7. Prediction plot of Kabul River discharge on test data of first round. 

5.1. Comparison of model accuracy 

The daily river discharge was estimated against various meteorological variables. Table 2 presents the 

training and testing phase results of daily river discharge prediction. In the training phase, the MLR model 

is the worst performer among all models (RMSE = 533.822 m3/s, MAE = 378.003 m3/s, RRSE = 0.711, 

MAPE = 66.786% and R2 = 49.4%). However, the SVM and ANN models performed relatively better 

than the MLR model. For example, in the training phase, the RMSE for MLR, SVM and ANN models is 

533.822 m3/s, 511.262 m3/s and 507.015 m3/s, respectively. Similar to this study, Zhang et al. (2018b) 

found that the MLR model is the worst performer for predicting river discharge in the East River basin of 

China. Some other studies found that the non-linear features of river discharge are captured well by SVM 

and ANN models (see Poul et al. 2019 and Meng et al. 2021). 

Comparing the performance of models based on meteorological variables selected by LASSO, we found 

that the performance of all models is improved in most of the instances. The performance of the LASSO-

MLR model is better than the MLR model in the testing phase (RMSE = 543.559 m3/s, MAE = 381.889 

m3/s, RRSE = 0.725, MAPE = 67.758% and R2 = 47.4%). However contrary results are obtained in the 

training phase, in which the LASSO-MLR model has a similar fit to the MLR model. The prediction abil-

ity of LASSO-ANN and LASSO-SVM is better than ANN and SVM models respectively. Mehr and Gan-

domi (2021) found that LASSO improved the predictive ability of a multi-stage genetic programming 

model by reducing the number of genes for predicting river discharge in the Sedre River of Turkey. In the 

training phase, the proposed LAES hybrid model has the best fit for river discharge data based on various 

performance criteria (RMSE = 302.952 m3/s, MAE = 201.022 m3/s, RRSE = 0.404, MAPE = 30.494% 

and R2 = 83.7%). 

Comparing the results in the testing phase, the MLR model has the poorest performance when all the me-

teorological variables were used as inputs (RMSE = 554.277 m3/s, MAE = 383.541 m3/s, RRSE = 0.739, 

MAPE = 68.134% and R2 = 45.3%). The use of LASSO for dimension reduction enhanced the perfor-

mance of MLR, SVM, and ANN models in the testing phase. Judging by RMSE, RRSE and R2, the 



LASSO-ANN model is a better performer than the LASSO-SVM and LASSO-MLR models. However, 

comparing MAE and MAPE, the LASSO-SVM model performs better than the LASSO-MLR and 

LASSO-ANN hybrid models (MAE = 307.124 m3/s and MAPE = 39.394%). The proposed LAES model 

outperforms all competing models in the testing phase (i.e., RMSE = 337.143 m3/s, MAE = 218.353 m3/s, 

RRSE = 0.449, MAPE = 32.354% and R2 = 79.8%). Overall, the proposed LAES hybrid model has higher 

prediction accuracy than single and LASSO-based ANN, SVM, and MLR models. 

Figure 8a presents the goodness-of-fit measure values of all the models considered in the study in both 

training and testing data. It shows that the proposed LAES hybrid model has the highest accuracy among 

all models considered in the study. The Taylor diagram in Figure 8b shows that the proposed LAES 

model is the most efficient among all models considered in predicting daily river discharge based on its 

relationship with meteorological variables. 

Table 2. Performance analysis of the proposed model with different models. 

Models RMSE (m3/s) MAE (m3/s) RRSE MAPE (%) R2 

 
Training 

MLR 533.822 378.003 0.711 66.786 0.494 

SVM 511.262 309.783 0.681 39.372 0.536 

ANN 507.015 334.263 0.676 50.508 0.542 

LASSO-MLR 534.091 378.263 0.712 66.878 0.494 

LASSO-SVM 469.381 280.664 0.625 35.972 0.609 

LASSO-ANN 456.981 302.596 0.609 45.686 0.629 

LAES 302.952 201.022 0.404 30.494 0.837 

 
Testing 

MLR 554.277 383.541 0.739 68.134 0.453 

SVM 527.427 324.443 0.702 41.814 0.505 

ANN 524.117 342.108 0.699 51.618 0.511 

LASSO-MLR 543.559 381.889 0.725 67.758 0.474 

LASSO-SVM 499.947 307.124 0.666 39.394 0.556 

LASSO-ANN 497.256 324.178 0.664 48.056 0.559 

LAES 337.143 218.353 0.449 32.354 0.798 

Note: Bold values represent minimum values in each column 

The improvements of the proposed LAES hybrid model are shown in Table 3 in terms of PRMSE, PMAE, 

PRRSE, PMAPE and PR2 for both training and testing phases. The proposed LAES hybrid model has 43.3%, 

40.7% and 40.3% lower RMSE than the MLR, SVM, and ANN models, respectively, in the training phase. 

The findings indicate that the MLR model is least efficient for non-linear data, consistent with the findings 

of Zhang et al. (2018b). 



 

Fig. 8. Prediction results of models in training and testing phase (a) and Taylor diagram (b) for the Kabul River. 

Comparing the LAES model to LASSO-based models, we found that their promoting improvements were 

lower compared to single MLR, SVM, and ANN models in the majority of the scenarios. During testing, 

the reduction in RMSE by LASSO-MLR and MLR models is 38% and 39.2%, respectively. Similarly, the 

improvements by the LAES model vs. the SVM model (36.1%) are higher than the LAES model vs. the 

SVM model (32.6%). The proposed LAES hybrid model has 68.2%, 43.6%, and 42.7% better prediction 

accuracy than the LASSO-MLR, LASSO-SVM, and LASSO-ANN models. Kang et al. (2023) also stated 

that LASSO helps enhance the predictive performance of monthly run-off, which is influenced by meteor-

ological events. 

Generally, the proposed LAES hybrid model has promising predictions compared to all six models. Dur-

ing the training phase, the MAE of LAES compared to MLR, SVM, ANN, LASSO-MLR, LASSO-SVM, 

and LASSO-ANN decreased by 46.8%, 35.1%, 39.9%, 46.9%, 28.4%, and 33.6% respectively. These re-

sults are in agreement with the findings of Duan et al. (2021). They reported that the decomposition-based 

error correction approach significantly improves the accuracy of models. 



Table 3. Improved percentage (%) of proposed model versus other models. 

Models 
Training Testing 

PRMSE PMAE PRRSE PMAPE PR
2 PRMSE PMAE PRRSE PMAPE PR

2 

LAES vs. MLR 43.3 46.8 43.3 54.3 –69.4 39.2 43.1 39.2 52.5 –76.1 

LAES vs. SVM 40.7 35.1 40.8 22.6 –56.2 36.1 32.7 36.0 22.6 –57.9 

LAES vs. ANN 40.3 39.9 40.3 39.6 –54.5 35.7 36.2 35.7 37.3 –56.1 

LAES vs. LASSO-MLR 43.3 46.9 43.3 54.4 –69.6 38.0 42.8 38.0 52.3 –68.2 

LAES vs. LASSO-SVM 35.5 28.4 35.5 15.2 –37.5 32.6 28.9 32.6 17.9 –43.6 

LAES vs. LASSO-ANN 33.7 33.6 33.7 33.3 –33.0 32.2 32.6 32.3 32.7 –42.7 

The DM test results on the testing data of Kabul River discharge are given in Table 4. The null hypothesis 

for all competing models is rejected at a 1% significance level. Thus, the prediction accuracy of the pro-

posed hybrid LAES model is higher than the six benchmark models. Therefore, the DM test confirms that 

the proposed LAES hybrid model has higher prediction accuracy than the competing models in predicting 

river discharge. 

Table 4. DM test of proposed hybrid model versus different models on the testing dataset. 

Model MLR SVM ANN LASSO-MLR LASSO-SVM LASSO-ANN 

DM-value –9.118*** –8.688*** –10.256*** –10.702*** –8.434*** –8.299*** 

*** significant at a 1% significance level 

6. Conclusion 

In this study, a new hybrid framework named LAES (LASSO-ANN-EMD-SVM) is introduced for model-

ing river discharge using information from several meteorological variables. The proposed hybrid model is 

a composite of a variable selection approach with an artificial neural network and error correction method. 

The application of the LAES hybrid framework is illustrated using the data from the Kabul River in Paki-

stan. The effectiveness and predictive ability of the proposed framework are compared with six models 

using different performance measures. The numerical findings reveal that the LAES hybrid model has bet-

ter prediction performance than the single and LASSO-based MLR, SVM, and ANN models. Judging by 

RRSE, the LAES hybrid model has 43.3%, 40.8%, 40.3%, 43.3%, 35.5%, and 33.7% lower prediction er-

rors than MLR, SVM, ANN, LASSO-MLR, LASSO-SVM and LASSO-ANN models respectively. The 

Diebold-Mariano test shows that the proposed LAES model has higher prediction accuracy than all com-

peting models in the study. The proposed LAES model can serve as a successful tool for river discharge 

prediction by considering the impact of meteorological variables. In this study, we have used the LAES 

hybrid model for regression modeling only, but it can be applied for time series prediction of hydrological 

variables (such as river inflow and monthly run-off). For future research, new hybrid models can be devel-

oped by considering (i) relevance vector machine (RVM) or deep learning models such as multilayer per-

ceptron (MLP) in modeling; and (iii) using decomposition techniques such as ensemble EMD, complete 

EEMD (CEEMD), and variational mode decomposition (VMD) methods in the error correction stage. 

The proposed LAES model can serve as a successful tool for river discharge prediction of catchment areas 

of different areas of the world for efficient planning of water resources.  
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Appendix 

ADF test results. 𝐻0 – the time series contains unit root and is non-stationary; 𝐻1 – the time series is stationary. 

Fold 2 3 4 5 

Duckey-Fuller Statistic –3.2011* –3.1671* –3.0869* –3.3423* 

p-value 0.08769 0.0935 0.1327 0.06334 

 

Fig. S1. Prediction results of LASSO-ANN (a) Error decomposition using EMD (b), modeling of decomposed com-

ponents (c) in the second fold of training phase of Kabul River. 



 

Fig. S2. Prediction results of LASSO-ANN (a) Error decomposition using EMD (b), modeling of decomposed com-

ponents (c) in the third fold of training phase of Kabul River. 

  



 

Fig. S3. Prediction results of LASSO-ANN (a) Error decomposition using EMD (b), modeling of decomposed com-

ponents (c) in the fourth fold of training phase of Kabul River. 

  



 

Fig. S4. Prediction results of LASSO-ANN (a) Error decomposition using EMD (b), modeling of decomposed com-

ponents (c) in the fifth fold of training phase of Kabul River. 


